A Course in Number Theory

A Course in Number Theory PDF Author: H. E. Rose
Publisher: Oxford University Press
ISBN: 9780198523765
Category : Mathematics
Languages : en
Pages : 420

Get Book

Book Description
This textbook covers the main topics in number theory as taught in universities throughout the world. Number theory deals mainly with properties of integers and rational numbers; it is not an organized theory in the usual sense but a vast collection of individual topics and results, with some coherent sub-theories and a long list of unsolved problems. This book excludes topics relying heavily on complex analysis and advanced algebraic number theory. The increased use of computers in number theory is reflected in many sections (with much greater emphasis in this edition). Some results of a more advanced nature are also given, including the Gelfond-Schneider theorem, the prime number theorem, and the Mordell-Weil theorem. The latest work on Fermat's last theorem is also briefly discussed. Each chapter ends with a collection of problems; hints or sketch solutions are given at the end of the book, together with various useful tables.

A Course in Number Theory and Cryptography

A Course in Number Theory and Cryptography PDF Author: Neal Koblitz
Publisher: Springer Science & Business Media
ISBN: 9780387942933
Category : Mathematics
Languages : en
Pages : 258

Get Book

Book Description
This is a substantially revised and updated introduction to arithmetic topics, both ancient and modern, that have been at the centre of interest in applications of number theory, particularly in cryptography. As such, no background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, emphasising estimates of the efficiency of the techniques that arise from the theory, and one special feature is the inclusion of recent applications of the theory of elliptic curves. Extensive exercises and careful answers are an integral part all of the chapters.

A Course in Number Theory and Cryptography

A Course in Number Theory and Cryptography PDF Author: Neal Koblitz
Publisher: Springer Science & Business Media
ISBN: 1468403109
Category : Mathematics
Languages : en
Pages : 208

Get Book

Book Description
The purpose of this book is to introduce the reader to arithmetic topics, both ancient and modern, that have been at the center of interest in applications of number theory, particularly in cryptography. Because number theory and cryptography are fast-moving fields, this new edition contains substantial revisions and updated references.

A Comprehensive Course in Number Theory

A Comprehensive Course in Number Theory PDF Author: Alan Baker
Publisher: Cambridge University Press
ISBN: 1139560824
Category : Mathematics
Languages : en
Pages :

Get Book

Book Description
Developed from the author's popular text, A Concise Introduction to the Theory of Numbers, this book provides a comprehensive initiation to all the major branches of number theory. Beginning with the rudiments of the subject, the author proceeds to more advanced topics, including elements of cryptography and primality testing, an account of number fields in the classical vein including properties of their units, ideals and ideal classes, aspects of analytic number theory including studies of the Riemann zeta-function, the prime-number theorem and primes in arithmetical progressions, a description of the Hardy–Littlewood and sieve methods from respectively additive and multiplicative number theory and an exposition of the arithmetic of elliptic curves. The book includes many worked examples, exercises and further reading. Its wider coverage and versatility make this book suitable for courses extending from the elementary to beginning graduate studies.

A Comprehensive Course in Number Theory

A Comprehensive Course in Number Theory PDF Author: Alan Baker
Publisher: Cambridge University Press
ISBN: 110701901X
Category : Computers
Languages : en
Pages : 269

Get Book

Book Description
The author's classic concise introduction now fully updated and developed to suit courses extending from primers to introductions to research.

A Course in Computational Algebraic Number Theory

A Course in Computational Algebraic Number Theory PDF Author: Henri Cohen
Publisher: Springer Science & Business Media
ISBN: 9783540556404
Category : Mathematics
Languages : en
Pages : 580

Get Book

Book Description
A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.

An Introductory Course in Elementary Number Theory

An Introductory Course in Elementary Number Theory PDF Author: Wissam Raji
Publisher: The Saylor Foundation
ISBN:
Category : Mathematics
Languages : en
Pages : 171

Get Book

Book Description
These notes serve as course notes for an undergraduate course in number theory. Most if not all universities worldwide offer introductory courses in number theory for math majors and in many cases as an elective course. The notes contain a useful introduction to important topics that need to be addressed in a course in number theory. Proofs of basic theorems are presented in an interesting and comprehensive way that can be read and understood even by non-majors with the exception in the last three chapters where a background in analysis, measure theory and abstract algebra is required. The exercises are carefully chosen to broaden the understanding of the concepts. Moreover, these notes shed light on analytic number theory, a subject that is rarely seen or approached by undergraduate students. One of the unique characteristics of these notes is the careful choice of topics and its importance in the theory of numbers. The freedom is given in the last two chapters because of the advanced nature of the topics that are presented.

Analytic Number Theory

Analytic Number Theory PDF Author: P. T. Bateman
Publisher: World Scientific
ISBN: 9789812560803
Category : Mathematics
Languages : en
Pages : 378

Get Book

Book Description
This valuable book focuses on a collection of powerful methods of analysis that yield deep number-theoretical estimates. Particular attention is given to counting functions of prime numbers and multiplicative arithmetic functions. Both real variable (?elementary?) and complex variable (?analytic?) methods are employed. The reader is assumed to have knowledge of elementary number theory (abstract algebra will also do) and real and complex analysis. Specialized analytic techniques, including transform and Tauberian methods, are developed as needed.Comments and corrigenda for the book are found at http: //www.math.uiuc.edu/ diamond/

A Course in Analytic Number Theory

A Course in Analytic Number Theory PDF Author: Marius Overholt
Publisher: American Mathematical Soc.
ISBN: 1470417065
Category : Mathematics
Languages : en
Pages : 371

Get Book

Book Description
This book is an introduction to analytic number theory suitable for beginning graduate students. It covers everything one expects in a first course in this field, such as growth of arithmetic functions, existence of primes in arithmetic progressions, and the Prime Number Theorem. But it also covers more challenging topics that might be used in a second course, such as the Siegel-Walfisz theorem, functional equations of L-functions, and the explicit formula of von Mangoldt. For students with an interest in Diophantine analysis, there is a chapter on the Circle Method and Waring's Problem. Those with an interest in algebraic number theory may find the chapter on the analytic theory of number fields of interest, with proofs of the Dirichlet unit theorem, the analytic class number formula, the functional equation of the Dedekind zeta function, and the Prime Ideal Theorem. The exposition is both clear and precise, reflecting careful attention to the needs of the reader. The text includes extensive historical notes, which occur at the ends of the chapters. The exercises range from introductory problems and standard problems in analytic number theory to interesting original problems that will challenge the reader. The author has made an effort to provide clear explanations for the techniques of analysis used. No background in analysis beyond rigorous calculus and a first course in complex function theory is assumed.

A Course in Number Theory

A Course in Number Theory PDF Author: H. E. Rose
Publisher: Oxford University Press
ISBN: 9780198523765
Category : Mathematics
Languages : en
Pages : 420

View

Book Description
This textbook covers the main topics in number theory as taught in universities throughout the world. Number theory deals mainly with properties of integers and rational numbers; it is not an organized theory in the usual sense but a vast collection of individual topics and results, with some coherent sub-theories and a long list of unsolved problems. This book excludes topics relying heavily on complex analysis and advanced algebraic number theory. The increased use of computers in number theory is reflected in many sections (with much greater emphasis in this edition). Some results of a more advanced nature are also given, including the Gelfond-Schneider theorem, the prime number theorem, and the Mordell-Weil theorem. The latest work on Fermat's last theorem is also briefly discussed. Each chapter ends with a collection of problems; hints or sketch solutions are given at the end of the book, together with various useful tables.

A Course in Number Theory and Cryptography

A Course in Number Theory and Cryptography PDF Author: Neal Koblitz
Publisher: Springer Science & Business Media
ISBN: 9780387942933
Category : Mathematics
Languages : en
Pages : 258

View

Book Description
This is a substantially revised and updated introduction to arithmetic topics, both ancient and modern, that have been at the centre of interest in applications of number theory, particularly in cryptography. As such, no background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, emphasising estimates of the efficiency of the techniques that arise from the theory, and one special feature is the inclusion of recent applications of the theory of elliptic curves. Extensive exercises and careful answers are an integral part all of the chapters.

A Course in Number Theory and Cryptography

A Course in Number Theory and Cryptography PDF Author: Neal Koblitz
Publisher: Springer Science & Business Media
ISBN: 1468403109
Category : Mathematics
Languages : en
Pages : 208

View

Book Description
The purpose of this book is to introduce the reader to arithmetic topics, both ancient and modern, that have been at the center of interest in applications of number theory, particularly in cryptography. Because number theory and cryptography are fast-moving fields, this new edition contains substantial revisions and updated references.

A Comprehensive Course in Number Theory

A Comprehensive Course in Number Theory PDF Author: Alan Baker
Publisher: Cambridge University Press
ISBN: 1139560824
Category : Mathematics
Languages : en
Pages :

View

Book Description
Developed from the author's popular text, A Concise Introduction to the Theory of Numbers, this book provides a comprehensive initiation to all the major branches of number theory. Beginning with the rudiments of the subject, the author proceeds to more advanced topics, including elements of cryptography and primality testing, an account of number fields in the classical vein including properties of their units, ideals and ideal classes, aspects of analytic number theory including studies of the Riemann zeta-function, the prime-number theorem and primes in arithmetical progressions, a description of the Hardy–Littlewood and sieve methods from respectively additive and multiplicative number theory and an exposition of the arithmetic of elliptic curves. The book includes many worked examples, exercises and further reading. Its wider coverage and versatility make this book suitable for courses extending from the elementary to beginning graduate studies.

A Comprehensive Course in Number Theory

A Comprehensive Course in Number Theory PDF Author: Alan Baker
Publisher: Cambridge University Press
ISBN: 110701901X
Category : Computers
Languages : en
Pages : 269

View

Book Description
The author's classic concise introduction now fully updated and developed to suit courses extending from primers to introductions to research.

A Course in Computational Algebraic Number Theory

A Course in Computational Algebraic Number Theory PDF Author: Henri Cohen
Publisher: Springer Science & Business Media
ISBN: 9783540556404
Category : Mathematics
Languages : en
Pages : 580

View

Book Description
A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.

A Second Course in Number Theory

A Second Course in Number Theory PDF Author: Harvey Cohn
Publisher:
ISBN:
Category : Number theory
Languages : en
Pages : 276

View

Book Description


An Introductory Course in Elementary Number Theory

An Introductory Course in Elementary Number Theory PDF Author: Wissam Raji
Publisher: The Saylor Foundation
ISBN:
Category : Mathematics
Languages : en
Pages : 171

View

Book Description
These notes serve as course notes for an undergraduate course in number theory. Most if not all universities worldwide offer introductory courses in number theory for math majors and in many cases as an elective course. The notes contain a useful introduction to important topics that need to be addressed in a course in number theory. Proofs of basic theorems are presented in an interesting and comprehensive way that can be read and understood even by non-majors with the exception in the last three chapters where a background in analysis, measure theory and abstract algebra is required. The exercises are carefully chosen to broaden the understanding of the concepts. Moreover, these notes shed light on analytic number theory, a subject that is rarely seen or approached by undergraduate students. One of the unique characteristics of these notes is the careful choice of topics and its importance in the theory of numbers. The freedom is given in the last two chapters because of the advanced nature of the topics that are presented.

Analytic Number Theory

Analytic Number Theory PDF Author: P. T. Bateman
Publisher: World Scientific
ISBN: 9789812560803
Category : Mathematics
Languages : en
Pages : 378

View

Book Description
This valuable book focuses on a collection of powerful methods of analysis that yield deep number-theoretical estimates. Particular attention is given to counting functions of prime numbers and multiplicative arithmetic functions. Both real variable (?elementary?) and complex variable (?analytic?) methods are employed. The reader is assumed to have knowledge of elementary number theory (abstract algebra will also do) and real and complex analysis. Specialized analytic techniques, including transform and Tauberian methods, are developed as needed.Comments and corrigenda for the book are found at http: //www.math.uiuc.edu/ diamond/

A Course in Analytic Number Theory

A Course in Analytic Number Theory PDF Author: Marius Overholt
Publisher: American Mathematical Soc.
ISBN: 1470417065
Category : Mathematics
Languages : en
Pages : 371

View

Book Description
This book is an introduction to analytic number theory suitable for beginning graduate students. It covers everything one expects in a first course in this field, such as growth of arithmetic functions, existence of primes in arithmetic progressions, and the Prime Number Theorem. But it also covers more challenging topics that might be used in a second course, such as the Siegel-Walfisz theorem, functional equations of L-functions, and the explicit formula of von Mangoldt. For students with an interest in Diophantine analysis, there is a chapter on the Circle Method and Waring's Problem. Those with an interest in algebraic number theory may find the chapter on the analytic theory of number fields of interest, with proofs of the Dirichlet unit theorem, the analytic class number formula, the functional equation of the Dedekind zeta function, and the Prime Ideal Theorem. The exposition is both clear and precise, reflecting careful attention to the needs of the reader. The text includes extensive historical notes, which occur at the ends of the chapters. The exercises range from introductory problems and standard problems in analytic number theory to interesting original problems that will challenge the reader. The author has made an effort to provide clear explanations for the techniques of analysis used. No background in analysis beyond rigorous calculus and a first course in complex function theory is assumed.