Lattice Path Counting and Applications

Lattice Path Counting and Applications PDF Author: Gopal Mohanty
Publisher: Academic Press
ISBN: 1483218805
Category : Mathematics
Languages : en
Pages : 200

Get Book

Book Description
Probability and Mathematical Statistics: A Series of Monographs and Textbooks: Lattice Path Counting and Applications focuses on the principles, methodologies, and approaches involved in lattice path counting and applications, including vector representation, random walks, and rank order statistics. The book first underscores the simple and general boundaries of path counting. Topics include types of diagonal steps and a correspondence, paths within general boundaries, higher dimensional paths, vector representation, compositions, and domination, recurrence and generating function method, and reflection principle. The text then examines invariance and fluctuation and random walk and rank order statistics. Discussions focus on random walks, rank order statistics, Chung-Feller theorems, and Sparre Andersen's equivalence. The manuscript takes a look at convolution identities and inverse relations and discrete distributions, queues, trees, and search codes, as well as discrete distributions and a correlated random walk, trees and search codes, convolution identities, and orthogonal relations and inversion formulas. The text is a valuable reference for mathematicians and researchers interested in in lattice path counting and applications.

Lattice Path Combinatorics and Applications

Lattice Path Combinatorics and Applications PDF Author: George E. Andrews
Publisher: Springer
ISBN: 9783030111014
Category : Mathematics
Languages : en
Pages : 418

Get Book

Book Description
The most recent methods in various branches of lattice path and enumerative combinatorics along with relevant applications are nicely grouped together and represented in this research contributed volume. Contributions to this edited volume will be mainly research articles however it will also include several captivating, expository articles (along with pictures) on the life and mathematical work of leading researchers in lattice path combinatorics and beyond. There will be four or five expository articles in memory of Shreeram Shankar Abhyankar and Philippe Flajolet and honoring George Andrews and Lajos Takács. There may be another brief article in memory of Professors Jagdish Narayan Srivastava and Joti Lal Jain. New research results include the kernel method developed by Flajolet and others for counting different classes of lattice paths continues to produce new results in counting lattice paths. The recent investigation of Fishburn numbers has led to interesting counting interpretations and a family of fascinating congruences. Formulas for new methods to obtain the number of Fq-rational points of Schubert varieties in Grassmannians continues to have research interest and will be presented here. Topics to be included are far reaching and will include lattice path enumeration, tilings, bijections between paths and other combinatoric structures, non-intersecting lattice paths, varieties, Young tableaux, partitions, enumerative combinatorics, discrete distributions, applications to queueing theory and other continuous time models, graph theory and applications. Many leading mathematicians who spoke at the conference from which this volume derives, are expected to send contributions including. This volume also presents the stimulating ideas of some exciting newcomers to the Lattice Path Combinatorics Conference series; “The 8th Conference on Lattice Path Combinatorics and Applications” provided opportunities for new collaborations; some of the products of these collaborations will also appear in this book. This book will have interest for researchers in lattice path combinatorics and enumerative combinatorics. This will include subsets of researchers in mathematics, statistics, operations research and computer science. The applications of the material covered in this edited volume extends beyond the primary audience to scholars interested queuing theory, graph theory, tiling, partitions, distributions, etc. An attractive bonus within our book is the collection of special articles describing the top recent researchers in this area of study and documenting the interesting history of who, when and how these beautiful combinatorial results were originally discovered.

Counting Lattice Paths Using Fourier Methods

Counting Lattice Paths Using Fourier Methods PDF Author: Shaun Ault
Publisher: Springer Nature
ISBN: 3030266966
Category : Mathematics
Languages : en
Pages : 136

Get Book

Book Description
This monograph introduces a novel and effective approach to counting lattice paths by using the discrete Fourier transform (DFT) as a type of periodic generating function. Utilizing a previously unexplored connection between combinatorics and Fourier analysis, this method will allow readers to move to higher-dimensional lattice path problems with ease. The technique is carefully developed in the first three chapters using the algebraic properties of the DFT, moving from one-dimensional problems to higher dimensions. In the following chapter, the discussion turns to geometric properties of the DFT in order to study the corridor state space. Each chapter poses open-ended questions and exercises to prompt further practice and future research. Two appendices are also provided, which cover complex variables and non-rectangular lattices, thus ensuring the text will be self-contained and serve as a valued reference. Counting Lattice Paths Using Fourier Methods is ideal for upper-undergraduates and graduate students studying combinatorics or other areas of mathematics, as well as computer science or physics. Instructors will also find this a valuable resource for use in their seminars. Readers should have a firm understanding of calculus, including integration, sequences, and series, as well as a familiarity with proofs and elementary linear algebra.

Lattice Path Combinatorics and Applications

Lattice Path Combinatorics and Applications PDF Author: George E. Andrews
Publisher: Springer
ISBN: 3030111024
Category : Mathematics
Languages : en
Pages : 418

Get Book

Book Description
The most recent methods in various branches of lattice path and enumerative combinatorics along with relevant applications are nicely grouped together and represented in this research contributed volume. Contributions to this edited volume will be mainly research articles however it will also include several captivating, expository articles (along with pictures) on the life and mathematical work of leading researchers in lattice path combinatorics and beyond. There will be four or five expository articles in memory of Shreeram Shankar Abhyankar and Philippe Flajolet and honoring George Andrews and Lajos Takács. There may be another brief article in memory of Professors Jagdish Narayan Srivastava and Joti Lal Jain. New research results include the kernel method developed by Flajolet and others for counting different classes of lattice paths continues to produce new results in counting lattice paths. The recent investigation of Fishburn numbers has led to interesting counting interpretations and a family of fascinating congruences. Formulas for new methods to obtain the number of Fq-rational points of Schubert varieties in Grassmannians continues to have research interest and will be presented here. Topics to be included are far reaching and will include lattice path enumeration, tilings, bijections between paths and other combinatoric structures, non-intersecting lattice paths, varieties, Young tableaux, partitions, enumerative combinatorics, discrete distributions, applications to queueing theory and other continuous time models, graph theory and applications. Many leading mathematicians who spoke at the conference from which this volume derives, are expected to send contributions including. This volume also presents the stimulating ideas of some exciting newcomers to the Lattice Path Combinatorics Conference series; “The 8th Conference on Lattice Path Combinatorics and Applications” provided opportunities for new collaborations; some of the products of these collaborations will also appear in this book. This book will have interest for researchers in lattice path combinatorics and enumerative combinatorics. This will include subsets of researchers in mathematics, statistics, operations research and computer science. The applications of the material covered in this edited volume extends beyond the primary audience to scholars interested queuing theory, graph theory, tiling, partitions, distributions, etc. An attractive bonus within our book is the collection of special articles describing the top recent researchers in this area of study and documenting the interesting history of who, when and how these beautiful combinatorial results were originally discovered.

Advances in Combinatorial Methods and Applications to Probability and Statistics

Advances in Combinatorial Methods and Applications to Probability and Statistics PDF Author: N. Balakrishnan
Publisher: Springer Science & Business Media
ISBN: 1461241405
Category : Mathematics
Languages : en
Pages : 562

Get Book

Book Description
Sri Gopal Mohanty has made pioneering contributions to lattice path counting and its applications to probability and statistics. This is clearly evident from his lifetime publications list and the numerous citations his publications have received over the past three decades. My association with him began in 1982 when I came to McMaster Univer sity. Since then, I have been associated with him on many different issues at professional as well as cultural levels; I have benefited greatly from him on both these grounds. I have enjoyed very much being his colleague in the statistics group here at McMaster University and also as his friend. While I admire him for his honesty, sincerity and dedication, I appreciate very much his kindness, modesty and broad-mindedness. Aside from our common interest in mathematics and statistics, we both have great love for Indian classical music and dance. We have spent numerous many different subjects associated with the Indian music and hours discussing dance. I still remember fondly the long drive (to Amherst, Massachusetts) I had a few years ago with him and his wife, Shantimayee, and all the hearty discussions we had during that journey. Combinatorics and applications of combinatorial methods in probability and statistics has become a very active and fertile area of research in the recent past.

Algebra, Arithmetic and Geometry with Applications

Algebra, Arithmetic and Geometry with Applications PDF Author: Chris Christensen
Publisher: Springer Science & Business Media
ISBN: 3642184871
Category : Mathematics
Languages : en
Pages : 785

Get Book

Book Description
Proceedings of the Conference on Algebra and Algebraic Geometry with Applications, July 19 – 26, 2000, at Purdue University to honor Professor Shreeram S. Abhyankar on the occasion of his seventieth birthday. Eighty-five of Professor Abhyankar's students, collaborators, and colleagues were invited participants. Sixty participants presented papers related to Professor Abhyankar's broad areas of mathematical interest. Sessions were held on algebraic geometry, singularities, group theory, Galois theory, combinatorics, Drinfield modules, affine geometry, and the Jacobian problem. This volume offers an outstanding collection of papers by expert authors.

Algebraic Combinatorics and Computer Science

Algebraic Combinatorics and Computer Science PDF Author: H. Crapo
Publisher: Springer Science & Business Media
ISBN: 8847021073
Category : Mathematics
Languages : en
Pages : 546

Get Book

Book Description
This book, dedicated to the memory of Gian-Carlo Rota, is the result of a collaborative effort by his friends, students and admirers. Rota was one of the great thinkers of our times, innovator in both mathematics and phenomenology. I feel moved, yet touched by a sense of sadness, in presenting this volume of work, despite the fear that I may be unworthy of the task that befalls me. Rota, both the scientist and the man, was marked by a generosity that knew no bounds. His ideas opened wide the horizons of fields of research, permitting an astonishing number of students from all over the globe to become enthusiastically involved. The contagious energy with which he demonstrated his tremendous mental capacity always proved fresh and inspiring. Beyond his renown as gifted scientist, what was particularly striking in Gian-Carlo Rota was his ability to appreciate the diverse intellectual capacities of those before him and to adapt his communications accordingly. This human sense, complemented by his acute appreciation of the importance of the individual, acted as a catalyst in bringing forth the very best in each one of his students. Whosoever was fortunate enough to enjoy Gian-Carlo Rota's longstanding friendship was most enriched by the experience, both mathematically and philosophically, and had occasion to appreciate son cote de bon vivant. The book opens with a heartfelt piece by Henry Crapo in which he meticulously pieces together what Gian-Carlo Rota's untimely demise has bequeathed to science.

Strategic Management, Decision Theory, and Decision Science

Strategic Management, Decision Theory, and Decision Science PDF Author: Bikas Kumar Sinha
Publisher: Springer Nature
ISBN: 9811613680
Category : Business & Economics
Languages : en
Pages : 280

Get Book

Book Description
This book contains international perspectives that unifies the themes of strategic management, decision theory, and data science. It contains thought-provoking presentations of case studies backed by adequate analysis adding significance to the discussions. Most of the decision-making models in use do take due advantage of collection and processing of relevant data using appropriate analytics oriented to provide inputs into effective decision-making. The book showcases applications in diverse fields including banking and insurance, portfolio management, inventory analysis, performance assessment of comparable economic agents, managing utilities in a health-care facility, reducing traffic snarls on highways, monitoring achievement of some of the sustainable development goals in a country or state, and similar other areas that showcase policy implications. It holds immense value for researchers as well as professionals responsible for organizational decisions.

Using the Mathematics Literature

Using the Mathematics Literature PDF Author: Kristine K. Fowler
Publisher: CRC Press
ISBN: 9780824750350
Category : Language Arts & Disciplines
Languages : en
Pages : 475

Get Book

Book Description
This reference serves as a reader-friendly guide to every basic tool and skill required in the mathematical library and helps mathematicians find resources in any format in the mathematics literature. It lists a wide range of standard texts, journals, review articles, newsgroups, and Internet and database tools for every major subfield in mathematics and details methods of access to primary literature sources of new research, applications, results, and techniques. Using the Mathematics Literature is the most comprehensive and up-to-date resource on mathematics literature in both print and electronic formats, presenting time-saving strategies for retrieval of the latest information.

Lattice Path Counting and Applications

Lattice Path Counting and Applications PDF Author: Gopal Mohanty
Publisher: Academic Press
ISBN: 1483218805
Category : Mathematics
Languages : en
Pages : 200

View

Book Description
Probability and Mathematical Statistics: A Series of Monographs and Textbooks: Lattice Path Counting and Applications focuses on the principles, methodologies, and approaches involved in lattice path counting and applications, including vector representation, random walks, and rank order statistics. The book first underscores the simple and general boundaries of path counting. Topics include types of diagonal steps and a correspondence, paths within general boundaries, higher dimensional paths, vector representation, compositions, and domination, recurrence and generating function method, and reflection principle. The text then examines invariance and fluctuation and random walk and rank order statistics. Discussions focus on random walks, rank order statistics, Chung-Feller theorems, and Sparre Andersen's equivalence. The manuscript takes a look at convolution identities and inverse relations and discrete distributions, queues, trees, and search codes, as well as discrete distributions and a correlated random walk, trees and search codes, convolution identities, and orthogonal relations and inversion formulas. The text is a valuable reference for mathematicians and researchers interested in in lattice path counting and applications.

Lattice Path Combinatorics and Applications

Lattice Path Combinatorics and Applications PDF Author: George E. Andrews
Publisher: Springer
ISBN: 9783030111014
Category : Mathematics
Languages : en
Pages : 418

View

Book Description
The most recent methods in various branches of lattice path and enumerative combinatorics along with relevant applications are nicely grouped together and represented in this research contributed volume. Contributions to this edited volume will be mainly research articles however it will also include several captivating, expository articles (along with pictures) on the life and mathematical work of leading researchers in lattice path combinatorics and beyond. There will be four or five expository articles in memory of Shreeram Shankar Abhyankar and Philippe Flajolet and honoring George Andrews and Lajos Takács. There may be another brief article in memory of Professors Jagdish Narayan Srivastava and Joti Lal Jain. New research results include the kernel method developed by Flajolet and others for counting different classes of lattice paths continues to produce new results in counting lattice paths. The recent investigation of Fishburn numbers has led to interesting counting interpretations and a family of fascinating congruences. Formulas for new methods to obtain the number of Fq-rational points of Schubert varieties in Grassmannians continues to have research interest and will be presented here. Topics to be included are far reaching and will include lattice path enumeration, tilings, bijections between paths and other combinatoric structures, non-intersecting lattice paths, varieties, Young tableaux, partitions, enumerative combinatorics, discrete distributions, applications to queueing theory and other continuous time models, graph theory and applications. Many leading mathematicians who spoke at the conference from which this volume derives, are expected to send contributions including. This volume also presents the stimulating ideas of some exciting newcomers to the Lattice Path Combinatorics Conference series; “The 8th Conference on Lattice Path Combinatorics and Applications” provided opportunities for new collaborations; some of the products of these collaborations will also appear in this book. This book will have interest for researchers in lattice path combinatorics and enumerative combinatorics. This will include subsets of researchers in mathematics, statistics, operations research and computer science. The applications of the material covered in this edited volume extends beyond the primary audience to scholars interested queuing theory, graph theory, tiling, partitions, distributions, etc. An attractive bonus within our book is the collection of special articles describing the top recent researchers in this area of study and documenting the interesting history of who, when and how these beautiful combinatorial results were originally discovered.

Lattice Path Counting and Applications

Lattice Path Counting and Applications PDF Author: Sri Gopal Mohanty
Publisher:
ISBN:
Category :
Languages : en
Pages : 490

View

Book Description


Counting Lattice Paths Using Fourier Methods

Counting Lattice Paths Using Fourier Methods PDF Author: Shaun Ault
Publisher: Springer Nature
ISBN: 3030266966
Category : Mathematics
Languages : en
Pages : 136

View

Book Description
This monograph introduces a novel and effective approach to counting lattice paths by using the discrete Fourier transform (DFT) as a type of periodic generating function. Utilizing a previously unexplored connection between combinatorics and Fourier analysis, this method will allow readers to move to higher-dimensional lattice path problems with ease. The technique is carefully developed in the first three chapters using the algebraic properties of the DFT, moving from one-dimensional problems to higher dimensions. In the following chapter, the discussion turns to geometric properties of the DFT in order to study the corridor state space. Each chapter poses open-ended questions and exercises to prompt further practice and future research. Two appendices are also provided, which cover complex variables and non-rectangular lattices, thus ensuring the text will be self-contained and serve as a valued reference. Counting Lattice Paths Using Fourier Methods is ideal for upper-undergraduates and graduate students studying combinatorics or other areas of mathematics, as well as computer science or physics. Instructors will also find this a valuable resource for use in their seminars. Readers should have a firm understanding of calculus, including integration, sequences, and series, as well as a familiarity with proofs and elementary linear algebra.

Lattice Path Combinatorics and Applications

Lattice Path Combinatorics and Applications PDF Author: George E. Andrews
Publisher: Springer
ISBN: 3030111024
Category : Mathematics
Languages : en
Pages : 418

View

Book Description
The most recent methods in various branches of lattice path and enumerative combinatorics along with relevant applications are nicely grouped together and represented in this research contributed volume. Contributions to this edited volume will be mainly research articles however it will also include several captivating, expository articles (along with pictures) on the life and mathematical work of leading researchers in lattice path combinatorics and beyond. There will be four or five expository articles in memory of Shreeram Shankar Abhyankar and Philippe Flajolet and honoring George Andrews and Lajos Takács. There may be another brief article in memory of Professors Jagdish Narayan Srivastava and Joti Lal Jain. New research results include the kernel method developed by Flajolet and others for counting different classes of lattice paths continues to produce new results in counting lattice paths. The recent investigation of Fishburn numbers has led to interesting counting interpretations and a family of fascinating congruences. Formulas for new methods to obtain the number of Fq-rational points of Schubert varieties in Grassmannians continues to have research interest and will be presented here. Topics to be included are far reaching and will include lattice path enumeration, tilings, bijections between paths and other combinatoric structures, non-intersecting lattice paths, varieties, Young tableaux, partitions, enumerative combinatorics, discrete distributions, applications to queueing theory and other continuous time models, graph theory and applications. Many leading mathematicians who spoke at the conference from which this volume derives, are expected to send contributions including. This volume also presents the stimulating ideas of some exciting newcomers to the Lattice Path Combinatorics Conference series; “The 8th Conference on Lattice Path Combinatorics and Applications” provided opportunities for new collaborations; some of the products of these collaborations will also appear in this book. This book will have interest for researchers in lattice path combinatorics and enumerative combinatorics. This will include subsets of researchers in mathematics, statistics, operations research and computer science. The applications of the material covered in this edited volume extends beyond the primary audience to scholars interested queuing theory, graph theory, tiling, partitions, distributions, etc. An attractive bonus within our book is the collection of special articles describing the top recent researchers in this area of study and documenting the interesting history of who, when and how these beautiful combinatorial results were originally discovered.

Advances in Combinatorial Methods and Applications to Probability and Statistics

Advances in Combinatorial Methods and Applications to Probability and Statistics PDF Author: N. Balakrishnan
Publisher: Springer Science & Business Media
ISBN: 1461241405
Category : Mathematics
Languages : en
Pages : 562

View

Book Description
Sri Gopal Mohanty has made pioneering contributions to lattice path counting and its applications to probability and statistics. This is clearly evident from his lifetime publications list and the numerous citations his publications have received over the past three decades. My association with him began in 1982 when I came to McMaster Univer sity. Since then, I have been associated with him on many different issues at professional as well as cultural levels; I have benefited greatly from him on both these grounds. I have enjoyed very much being his colleague in the statistics group here at McMaster University and also as his friend. While I admire him for his honesty, sincerity and dedication, I appreciate very much his kindness, modesty and broad-mindedness. Aside from our common interest in mathematics and statistics, we both have great love for Indian classical music and dance. We have spent numerous many different subjects associated with the Indian music and hours discussing dance. I still remember fondly the long drive (to Amherst, Massachusetts) I had a few years ago with him and his wife, Shantimayee, and all the hearty discussions we had during that journey. Combinatorics and applications of combinatorial methods in probability and statistics has become a very active and fertile area of research in the recent past.

Algebra, Arithmetic and Geometry with Applications

Algebra, Arithmetic and Geometry with Applications PDF Author: Chris Christensen
Publisher: Springer Science & Business Media
ISBN: 3642184871
Category : Mathematics
Languages : en
Pages : 785

View

Book Description
Proceedings of the Conference on Algebra and Algebraic Geometry with Applications, July 19 – 26, 2000, at Purdue University to honor Professor Shreeram S. Abhyankar on the occasion of his seventieth birthday. Eighty-five of Professor Abhyankar's students, collaborators, and colleagues were invited participants. Sixty participants presented papers related to Professor Abhyankar's broad areas of mathematical interest. Sessions were held on algebraic geometry, singularities, group theory, Galois theory, combinatorics, Drinfield modules, affine geometry, and the Jacobian problem. This volume offers an outstanding collection of papers by expert authors.

Algebraic Combinatorics and Computer Science

Algebraic Combinatorics and Computer Science PDF Author: H. Crapo
Publisher: Springer Science & Business Media
ISBN: 8847021073
Category : Mathematics
Languages : en
Pages : 546

View

Book Description
This book, dedicated to the memory of Gian-Carlo Rota, is the result of a collaborative effort by his friends, students and admirers. Rota was one of the great thinkers of our times, innovator in both mathematics and phenomenology. I feel moved, yet touched by a sense of sadness, in presenting this volume of work, despite the fear that I may be unworthy of the task that befalls me. Rota, both the scientist and the man, was marked by a generosity that knew no bounds. His ideas opened wide the horizons of fields of research, permitting an astonishing number of students from all over the globe to become enthusiastically involved. The contagious energy with which he demonstrated his tremendous mental capacity always proved fresh and inspiring. Beyond his renown as gifted scientist, what was particularly striking in Gian-Carlo Rota was his ability to appreciate the diverse intellectual capacities of those before him and to adapt his communications accordingly. This human sense, complemented by his acute appreciation of the importance of the individual, acted as a catalyst in bringing forth the very best in each one of his students. Whosoever was fortunate enough to enjoy Gian-Carlo Rota's longstanding friendship was most enriched by the experience, both mathematically and philosophically, and had occasion to appreciate son cote de bon vivant. The book opens with a heartfelt piece by Henry Crapo in which he meticulously pieces together what Gian-Carlo Rota's untimely demise has bequeathed to science.

Strategic Management, Decision Theory, and Decision Science

Strategic Management, Decision Theory, and Decision Science PDF Author: Bikas Kumar Sinha
Publisher: Springer Nature
ISBN: 9811613680
Category : Business & Economics
Languages : en
Pages : 280

View

Book Description
This book contains international perspectives that unifies the themes of strategic management, decision theory, and data science. It contains thought-provoking presentations of case studies backed by adequate analysis adding significance to the discussions. Most of the decision-making models in use do take due advantage of collection and processing of relevant data using appropriate analytics oriented to provide inputs into effective decision-making. The book showcases applications in diverse fields including banking and insurance, portfolio management, inventory analysis, performance assessment of comparable economic agents, managing utilities in a health-care facility, reducing traffic snarls on highways, monitoring achievement of some of the sustainable development goals in a country or state, and similar other areas that showcase policy implications. It holds immense value for researchers as well as professionals responsible for organizational decisions.

Using the Mathematics Literature

Using the Mathematics Literature PDF Author: Kristine K. Fowler
Publisher: CRC Press
ISBN: 9780824750350
Category : Language Arts & Disciplines
Languages : en
Pages : 475

View

Book Description
This reference serves as a reader-friendly guide to every basic tool and skill required in the mathematical library and helps mathematicians find resources in any format in the mathematics literature. It lists a wide range of standard texts, journals, review articles, newsgroups, and Internet and database tools for every major subfield in mathematics and details methods of access to primary literature sources of new research, applications, results, and techniques. Using the Mathematics Literature is the most comprehensive and up-to-date resource on mathematics literature in both print and electronic formats, presenting time-saving strategies for retrieval of the latest information.